jump to navigation

Every ball is an odd ball December 16, 2009

Posted by Jorge Candeias in Earth, Jupiter, Mars, Mercury, Neptune, Saturn, Uranus, Venus.
Tags: , , , , , , ,
2 comments

No, this isn’t going to be a more or less pythonesque version of that famous song that goes “every sperm is sacred”. It’s a reaction to this article, that claims that Venus and Uranus are “the Solar System’s oddballs”. Had it been written a handful of years ago, it would have been Pluto to get the honor. Now, it’s Venus and Uranus.

Well, with my apologies to this Christopher Sirola, who wrote the article and should really know better, but it’s dead wrong.

Dead.

Wrong.

The thing is: every ball is an odd ball.

Mercury is an oddball because it’s way denser than anything else of similar size in the Solar System and has a day (a solar day, that is) which is twice as long as its year. Yes, you need two mercurian years to complete only one mercurian day, which means that Mercury has the simplest calendar in the Solar System.

Venus is an oddball because, as mr. Sirola states in his article, rotates backwards. The Sun rises in the west and sets in the east, a long 58 or so (Earth) days later. If you could see it, that is, because Venus has a dense atmosphere with hellish temperatures and is permanently overcast by clouds of sulfuric acid, among other migraine-inducing compounds.

The Earth is an oddball because its surface is largely covered by a several-km deep layer of liquid water. And because of that green stuff that gets everywhere, that chlorophyl or whatever its name is. And because it’s dotted with strange lights in its night side. And… hell, there are so many unique characteristics about it that the Earth is the oddball of oddballs. ‘Nuff said.

Mars is an oddball because of those gigantic pimples it shows, those enormous volcanos in Tharsis and, of course, that behemoth 27 km high known as Olympus Mons. It’s also an oddball because of another behemoth in the canyon department, known as Valles Marineris. Because of its global dust storms. And, of course, because of all that rust.

Jupiter is an oddball because it has a red hurricane that has been going round in its atmosphere for centuries. Because it’s by far the most massive object in the system after the Sun. Because it emits more radiation than it absorbs. Because of all those multicoloured cloud bands, whirling at different speeds around and blurring its oh-so-short day.

Saturn is an oddball because of its rings. One could speak of many other features (polar hexagon, anyone?) but, really, the rings are more than enough.

Uranus is an oddball because it’s laying down on its orbit, of course. And Neptune is an oddball because it’s the only one left, apart from all those planets we still know too little about to really understand how oddballish they are: Ceres, Pluto, Eris, Makemake, etc., etc., etc. And don’t get me started on the secondary ones. One is yellow with sulfuric volcanos everywhere, another is orange with a thick atmosphere and lakes of hydrocarbons, another has jets of ice in its south pole, another is white and cracked and has a subsurface ocean, another is half pitch-black, half snow-white, another… pfuah! Let me breathe here!

The truth is, in the Solar System each world is unique. One of a kind and full of surprises. They are all oddballs, each in its own way, shaped by its own unique history to become what we see today. Maybe one day, when the number of known and well-studied extrasolar planets becomes as mindboggling as the number of stars is, we’ll find close twins to all of them, but I’d bet that we’ll be finding surprises just about everywhere, subtle differences that make all the difference.

I’d bet that we’ll end up discovering that, indeed, every ball is an odd ball. Everywhere, not only in the Solar System.

Advertisements

Some size comparisons August 7, 2009

Posted by Jorge Candeias in Earth, Eris, Jupiter.
Tags: , , , , ,
2 comments

Well, I think it’s about time this blog includes a few pictures. And, since posts with pictures tend to require less words, it’s also a great way to give it content without spending in it too much time. So here are two quick renditions I made with Celestia, showing side by side the largest of the Solar System’s giant, terrestrial and dwarf planets:

Size comparison of Jupiter and the Earth

Size comparison of Jupiter and the Earth

Size comparison of the Earth and Eris

Size comparison of the Earth and Eris

The Earth in the bottom image is slightly larger than Jupiter in the top image (it isn’t easy to get this just right in Celestia without doing some math, which I didn’t), but I think the comparisons are effective even so. Eris (which doesn’t look like that, by the way; since we’ve never seen its surface, Celestia uses by default a generic texture, the same for all bodies in the same situation) is closer to the size of the Earth than the Earth is to the size of Jupiter. If you need numbers, then they are approximately as follows: the diameter of Jupiter is 11 times that of Earth. The diamater of the Earth is 5 times that of Eris (and no, the rather large uncertainties in Eris data don’t change this by much; at most they may drop that number to 4). More interestingly, if you compare not sizes but masses, which are actually more relevant, you get a couple of very similar numbers: Jupiter is about 320 times more massive than the Earth; the Earth is approximately 360 times more massive than Eris.

And the point is?

There isn’t much of a point, really. This just goes to show you that when it comes to compare sizes we’re not all that gifted. The big boys in the block are really big. And if you look at them from this perspective, the dwarfs don’t seem all that insignificant anymore.

And remember: if you look beyond the Solar System you’ll find other big boys that are even bigger than the big boy from our own neighbourhood, making our planet seem even more puny and helpless. HD 139357 b, for instance, is a behemoth 9.76 times more massive than Jupiter, which is to say 3100 times more massive than the Earth. Yes, that’s three thousand Earths needed to make only one gas giant.

Good thing that it strolls around almost 400 light years away, huh?